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Cortical representation of face and tongue
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The tongue plays a critical role in vital and
complex oromotor behavior.
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Disorders affecting lingual functions have
devastating effects on the quality of life.
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The tongue is one of the most densely innervated
parts of the body.
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Tactile and Proprioception

» to monitor food properties
> to regulate bite force
» to know when to swallow safely

> to perceive where the tongue is relative to teeth,
palate
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TONGUE MUSCLE GROUPS
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The orofacial sensorimotor cortex is involved in
the control of tongue movements.

» Neurons modulate their activity when generating tongue
protrusive force and during natural feeding.

» Huang et al., 1989; Murray & Sessle, 1992; Lin et al., 1994; Yao et al.,
2002; Hatanaka et al., 2005; Svensson et al., 2003, 2006; Arce-McShane
et al, 2013, 2014, Liu et al., 2019; Laurence-Chasen et al., 2019, 2020,
2021; Tang et al., 2021

> Neurons undergo learning-induced plasticity.
» Murray et al,Avivi-arber et al., 2010, 2011; Arce-McShane et al., 2016

» Neurons form coherent networks within and across motor
and somatosensory areas in a reciprocal manner.

> Arce-McShane et al., 2016; Balasubramanian et al., 2019; Sheridan,
Laurence-Chasen & Arce-McShane, 2021
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Are 3D tongue position and
shape encoded by the orofacial
sensorimotor cortex?
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Methods
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Orofacial sensorimotor cortex

Primary motor cortex
(Rostral M1o,
Caudal M10)

Primary somatosensory
(area 3a/3b,
1, 2)
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Neural recording from chronically implanted multiple
micro-electrode arrays
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Superficial and deep lingual markers
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Tracking tongue and jaw movements using
hi-resolution biplanar video-radiography

JD Laurence-Chasen
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Automated tracking of 3D tongue and mandible
kinematics

METHODS & TECHNIQUES
Integrating XMALab and DeepLabCut for high-throughput XROMM

J.D. Laurence-Chasen, Armita R. Manafzadeh, Nicholas G. Hatsopoulos, Callum F. Ross, Fritzie |. Arce-McShane
Journal of Experimental Biology 2020 223: jeb226720 doi: 10.1242/jeb.226720 Published 4 September 2020

nature .
ncuroscience TEE:EE!S&J%EE:!?:&EI

DeepLabCut: markerless pose estimation of
user-defined body parts with deep learning
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Behavioral paradigm: Natural feeding

Feeding sequence

J. Neural Eng. 16 (2019) 026038 S Liu et al

£
S
=
g
2
@
8
<
L
£
@
£
@
o
]
o
]
o
|
&
o
=

UNIVERSITY of WASHINGTON



18

Tongue Kinematic Variables

Sagittal flexion
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Isolating Tongue Shape

Generalized Procrustes Analysis

Sagittal flexion

Procrustes transformation
to isolate shape change
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Higher dimensional control signal is required
to reproduce tongue shape
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Decoding Analysis

» Long- short-term memory (LSTM) network
Hochreiter & Schmidhuber, 1997; Glaser et al., 2020

» 7-fold cross-validation strategy to avoid overfitting
> Test fold: 4 trials
» Train fold: 24 trials

» Decoding accuracy measured using fraction of variance accounted
for (R?)




Results
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Results

1. Decoding movement + shape
2. Decoding shape only

3. Decoding performance: M1 vs S1

asen



1. Decoding tongue position and shape from
motor cortex (M1)
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S2T Swallow Manipulation
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High decoding accuracy by M1 neurons
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2. Decoding tongue shape only
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Comparable decoding for tongue shape
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3. Decoding performance: M1 vs S1

Higher decoding accuracy in M1
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Summary
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Summary and Conclusions

Orofacial sensorimotor cortex is involved in lingual
control during feeding.

1. Both 3D tongue position and shape can be
decoded reliably from orofacial sensorimotor

cortex.

2. Decoding using M1 neurons yielded better

performance than S1 neurons.
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Clinical Implications

> Development of evaluation and treatment of
orofacial sensorimotor dysfunctions (dysphagia,
dysarthria, tremors) and neural prosthesis to restore
lingual function

> Groundwork for studies on oral somatosensation,
pain mechanisms, and sensorimotor integration

> treatment of sensory impairments associated with dental
implants, trigeminal neuralgia, temporomandibular disorders,
orofacial pain
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SURF Posters

> Eli Cosovan, Encoding of Tongue Direction During
Natural Feeding

» Kevin Huang, Tongue Kinematics in Healthy Aging
vs. Loss of Sensation

» Wolfgang McLelland, Sensory Loss Affects
Functional Connectivity in Orofacial Sensorimotor

Cortex
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